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Abstract

A dual boundary element method is developed for a analysis of reinforced cracked shallow shells. Boundary integral
equations are derived from the Betti’s reciprocal theorem for a cracked shallow shell with transverse frames and lon-
gitudinal stiffeners. The effect of frames and stiffeners are treated as a distribution of line body forces. The radial basis
function is used to transform domain integrals to boundary integrals. Stress intensity factors are evaluated from crack
opening displacements. The effect of curvature on the stress intensity factors is illustrated by numerical examples. Three
examples are presented to demonstrate the accuracy of this method compared with solutions obtained using the finite
element method.
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Boundary element method; Stiffened shallow shells; Fracture mechanics; Stress intensity factors

1. Introduction

Enhanced quality control procedures introduced at the manufacturing stage aim to ensure aircraft are
free of structural flaws. However, since the early 1950s, experience has shown that the ability to tolerate a
substantial amount of damage is a requirement for modern aircraft. For transport aircraft the skin
structure of a pressurized fuselage is fatigue sensitive. Therefore accurate fatigue and residual strength
estimations of the critical components must be carried out to ensure safe operation. Aircraft fuselages are
made of thin sheets of metal (i.e. a skin) reinforced by longitudinal and transverse stiffeners. The stiffeners
can be attached to the sheet by means of fasteners, bonded to it or, alternatively, machined to form an
integral panel. The longitudinal and transverse membranes are used to divide the skin into small panels, so
increasing the bulkling and failing loads as well as assisting the skin in resisting bending, axial loads and
hoop stress caused by pressurization of the aircraft. The stiffeners provide an alternative path for the panel
load to pass around a cracked skin. If a skin crack reaches a critical length and a skin fracture begins, the
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load is transferred from the skin to the stiffeners and the fracture is arrested. Fracture mechanics provides
the concepts and mathematical basis for damage tolerance design.

Configurations involving cracks in infinite or semi-infinite plates with riveted stiffeners or stringers have
been studied by several authors (see, for example, Romualdi et al., 1957; Sanders, 1959; Greif and Sanders,
1965; Salgado and Aliabadi, 1998). By using Reissner’s plate theory and the Fourier integral transform
technique, an analytical solution for a stiffened plate containing a through-crack subjected to a uniform
bending load was obtained by Yahsi and Shahid (1986). The asymptotic stress state near the crack tip
terminating at the stiffener was also examined in Yahsi and Shahid (1986). More recently, attention has
been paid to curved panels used in the fuselage section (see Schijve, 1995). It is generally recognized that
cracks in curved shells behave differently from cracks in flat sheets. This is mainly due to the curvature
which causes amplification of the crack opening displacements (CODs) in the shells compared with to
the case of a crack on a plate subjected to identical membrane loading conditions. Application of the
finite element method to cracked curved panels can be found in Barsoum et al. (1979) and Huang et al.
(1997a,b).

The application of the boundary integral equation method to the plate bending problem was presented
by Jaswon and Maiti (1968) using classical theory. For the Reissner plate model, the boundary inte-
gral equation was derived by Vander Weeen (1982) and fundamental solutions were deduced using the
Hormander method. A review of the application of the boundary element method to plate bending
problems can be found in the book by Aliabadi (1998). A displacement integral equation for a shear de-
formable shell was derived by Dirgantara and Aliabadi (1999) and the cell technique was used to treat the
domain integrals. Recently Wen et al. (2002a) developed the dual reciprocity method to transform domain
integrals into boundary integrals in BEM analysis for shell problems and studied reinforced shells Wen et al.
(2002b). Hypersingular formulation for cracked shells was presented by Dirgantara and Aliabadi (2001). A
comprehensive coverage of BEM formulations can be found in a two volume text book by Wrobel (2002)
and Aliabadi (2002).

In this paper, based on the shear deformable plate theory, the dual boundary integral equations are
presented for stiffened shallow shells. The couple terms are treated as body forces and the boundary values
of rotations and deflection for plate bending and displacements for the two-dimensional in-plane problem
are determined for a cracked panel by solving the dual integral equations. The effects of stiffeners on the
reinforced shell are described; the line body forces and the distributions of these body forces are determined
by the displacement connection conditions. Stress intensity factors for both bending and in-plane problems
are obtained by CODs. Several examples are presented and comparisons are made with the finite element
method to demonstrate the accuracy of the proposed method.

2. Boundary integral equations for a cracked shell

Consider a shallow shell, as shown in Fig. 1(a), with a quadratic middle surface given by

1
z=-3 (k1ix; + kox3) (1)

where k;; and k,, are the principal curvatures of the shell in the x;- and x,-directions respectively. The
equilibrium equations can be written in terms of displacements for plane stress elasticity as

Ligug + f, =0 (2)
and, for plate bending,
L?,'{wk +q¢:=0 (3)
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Fig. 1. Curved stiffened panel and curved stiffener.

where Greek indices vary from 1 to 2 and Roman indices vary from 1 to 3. The Navier differential operators
LaKﬁ and L), are defined in Wen et al. (2002a). The equivalent body forces for plane stress elasticity are given
as

fu= 1+ BI(1 = v)kap + vhygduplws )
and, for plate bending as

@1=¢92=0

qs = q3 — Bl(1 = V)kop + Vkpyuplitn — B(ky + k3, + 2vkrikan)ws (5)

where u, and ws are translations of displacements in x;-, x;- (two-dimension) and x;-directions and w, are
rotations in the x,-direction. The body forces applied on the shell are denoted by /7 and ¢ along the x,- and
x3-directions respectively. The material parameter B = Eh/(1 — v?) is tension stiffness, D = EA*/12(1 — v?)
is bending stiffness of the plate, # is the thickness of the plate; and E and v are the elastic constants.

By using Betti’s reciprocal theorem, displacements for plane stress two-dimensional elasticity at X' in the
domain Q can be written as (see Wen et al., 2002a; Aliabadi, 2002)

w(X) = [ US(XX)p(x) AT (6) = BI(1 = v)ky, + vhaody ] [ US (K, 30m (x)ws(x) 4T (x)

- /F (X, X)up(x) I (x) + /Q Unp (X, X)£3(X) d(X) (6)
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where #, = Nypng; Uyp(x',x) and T (x', x) are displacement and traction fundamental solutions for the plane
stress condition (Kelvm s solutlons) The rotations and deflection w; at X’ in the domain  can be obtained
from

(X)) = / UY (X', X)pi(x) AT (x) — / 7Y (X', X)wi(x) dT'(x) + / UY (X', X)qi(X) dQ(X) (7)

where p, = M,gnp, p3 = Qpng and U,y, T; Vv are displacement and traction fundamental solutions respectively

for the plate bending problem. The boundary integral equations can be obtained by considering the limit as
the domain point X’ to a boundary point x. Substituting (4) and (5) into Egs. (6) and (7), the boundary
integral equation (10) for the shallow shell problem can be written as

S0 () + £ TN Ar(x) = [ UK x0T () + BI(T = )by, -+ vk
<[ US Xm0 () AT (x) = B [ USOC X1 = )y -+ vk o, (X) d2(X)

- / UK (X X)£0(X) dQ(X) (8)

for plane stress, where f denotes a Cauchy principal-value integral, and

() + f

r

T (¢, X)wi(x) AT (x) / UY (', X)pe(x) (%) + B(1 — vy + vhgyog]
r
X / U;(X’,X)u%ﬂ d.Q — B(k121 —+ k;z —+ 2Vk11k22) / l]l-;/(xl, X)Wg d.Q = / Uig(X/, X)qg d.Q (9)
Q Q Q

for plate bending. The free terms cj;(x') and ¢} (x') are functions of the geometry at the boundary points
which can be determined by considering rigid body movements.

On one of the crack surfaces, traction boundary integral equations with hypersingularities can be written
as follows (see Dirgantara and Aliabadi, 2001):

300 = 5000) =i f US048 () =y f 75 (67 xu, () 4T (x)
— ngB[(1 — v)ky, + vk 00, ]/ s K (X", X)ng(x)ws(x) dI'(x)
B[ U, X1 = ko, -+ vhoud () d(X)

g [ US,(x° X0g,(X)d(X) (10)

for two-dimensions and

3P0¢) = 3p00) = mp f UR O X0p 0410 = g T8 (X xpwe (x) 4T ()

— n[;B[(l — V)k},g + Vk¢¢5y9] /Q UZX; (X+, X)u%g dQ — I’lﬂB(k%l + kgz + 2Vk]1k22)

< [ Ubx Xwad vy [ UR(x' X)abae (11

where x*, x~ denote the collocation points on the crack’s upper and lower surfaces respectively, ][ denotes

a Hadamard principal-value integral, Uy , T, and Uy,, Ty, contain derivatives of fundamental solutions
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(see Dirgantara and Aliabadi, 2001 for details). It can be seen that the BEM solutions for the shallow shell
problem can be solved from boundary integral equations (8)—(11) by the coupling of plane stress two-
dimensional elasticity and the plate bending problem. The domain integrals contain coupling terms in
equivalent body forces f, and ¢ in the equations. In the boundary integral equations (8)—(11), there are 12
domain integrals in the absence of body force (i.e. f{ = f = 0). They can be transformed to boundary
integrals by using the dual reciprocity method (see Wen et al., 2002a; Dirgantara and Aliabadi, 2001;
Aliabadi, 2002 for details).
Considering the properties of the fundamental solution as below:

Usp (X/Jrv X) = Usp (XP? x), Uspy (X/+7 X) = U“ﬁ‘/(x/iv x)

and

Tp(X",X) = =Tp(x7,X), T (X7, X) = =T, (x7,X)

If t,ﬁ +t; = 0 for two-dimensions, the boundary integral equations (1) and (8) can be rewritten as

c&(x')u,;(x’)—l—f T;(x’,x)uﬁ(x)df—&—/

ro c+

Tﬁ(x’,x*)Auﬁdf—/ Uy (X', X)t5(x) dI

Iy

+ B[(l — V)k/;v + Vk(/,(pé/;v] </ U;?(X/’ X)I’l/j(X)W3 dar + /
I

0 ct

U;(,,(x’, X)np(X) Aws(x) dF)

- B/Q Uy (X, X)[(1 = v)kg, + Vg dp,Iws ,(X) dQ = /Q Uy (X', X)fg dQ (12)
for displacements and

1 1
Sl) = 3) = f U (6 X)) A8 < gl ) [T (X () dr
I'y

Iy

o (X/+)f C-H;v(x”a X") Au, dI' = ngB[(1 — v)kg; + vksg00;]
X (/r U;},},(xﬂx)n()(x)m dr + /c U;;y(x*,x)ng(x) Aws dF)
0 +
+ nﬁB\/(; UES; (X+7 X)[(l — V)kg}, + Vk(f)(pé(;y]W&g(X) dQ + I’lﬁ/g UEE/ (X+7 X)q? dQ

(13)

for tractions. Similarly if p;” + p; = 0 for bending, the boundary integral equations (2) and (9) can be
rewritten as

A mx) +

Iy

T Xm0 dr + [

ct

wwvaaﬁ/wwmmwww

Ty

+ B[(l — V)k“ﬁ + de)d)éoc[)’] / (]X(X/, X)uw d.Q — B(klzl + k§2 + 2Vk11k22) / IJIX(X,, X)W3 d.Q
Q

Q

_ / UY (%, X)q! dQ (14)
Q
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for rotations and deflection, and

1 1
3pO) = 3p) = mf UL X AT =y [ T X)) dr

Iy Iy

_ nﬁ(x’+)f TiZk(x/Jr7 X+) Aw,dIN — nﬁB[(l - v)kyg + Vk(i,d;é},g] / 1]1\1;3 (X+, X)u},_ﬂ dQ
Cc* Q
— npB(k}, + k2, + 2vki k) / Uy (X, X)w3 dQ + g / U (X7, X)q) dQ (15)
Q Q

for tractions, where I'y = I' — C* — C~ (boundaries excluding crack surfaces), C* and C~ represent upper
and lower crack surfaces and Awg and Aw, are discontinuities of displacements and defined as
Aug = uy —uy and Aw, = w; — w, . In this case, the unknowns can be reduced to the displacements or
traction on the boundary I'y and discontinuity of displacement on the crack surface C. Applying the dis-
placement integral equation on the boundary I'y and the traction equation on the crack surface C* gives a
linear system to determine all unknowns including discontinuity displacements on the crack surface Aug
and Awy.

3. Numerical implementation for stiffened cracked shells

Considering a straight beam parallel to the x;-axis and ignoring the torsional effect of a curved beam,
there are only two distributions of interaction forces f'(x;) and ¢g(x;) at the top of the beam along the x,-axis
as shown in Figs. 1(b) and 2. If there is only a uniform pressure load ¢ acting on the shell, the body forces
in Egs. (4) and (5) can be written as

Si(x1,x0) = —f(x1)6(x2 —Xg)
fz(xl,x2):0 (16)
g3(x1,%2) = q2 —q(x)8(x2 — d)

q(m)

(@)

N collocation points in the domain Q

x(;/ \\\~ ™
xoL//‘)r NR
end of stiffener end of stiffener

(b)

Fig. 2. Interaction forces and nodal distribution on the curved stiffener.
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where d(x) is the Dirac delta function, x denotes the local coordinate on the beam along the x;-axis and d
denotes the distance between the beam and x;-axis. The interaction forces’ nodal values can be expressed in
terms of nodal values of deflection and displacement as (see Appendix A)

q=Q 'Rw—Q 'Pu (17)
and
f=E'[QQ'R+Rw+E '[P —QQ 'Pu (18)

Using quadratic elements, the boundary integral equation (8) can be written in a discretized form as

Ly 3 Ny 3 1
)+ Z"ﬂ/ Tl x( -2 [ Usx x@m@r@a
B = )k, + s 30 S / U XN (€ (3) 2 — Blkiy + vhon) L

B(kyy + vki1)Ls = — /XR UE(X,;xl)f(xl)dxl (19)

xL
where u,’j, t/lj and w} present the boundary values at each node, N, and J" are shape functions and Jacobian

for each element, N, is the total number of elements and 7,4 and 7,5 are domain integrals, x;, xg are the two
end coordinates of a curved beam. Similarly, Eq. (9) becomes

$)+ 33wl [ 0dc- 330k [ Ul s @)

n=1 I=1
XR
B(kiy + vkan) Iy + Bk + vk )iz + Bk, + koy + 2vky k) Iy — Lig = */ U (X', x1)g(xr) dx
xL
(20)

Using quadratic elements, the traction boundary integral equations (10) and (11) can be written in a dis-
cretized form as

No 3
%[ta(xJ’)—tu(x_)}Jrn/fZZ /TK X, X(EIN, (&) (&) d¢

No Ny 3
- Z / UK, X, X(ENI(E" () dE — ngB(1 — )k, + vpgdn] 3 ;wg

n=1 I=1 n=1

|
X / Ume[x’,x(f)]N,(f)J"(é)nG(x) dé — B(kiy + vkn) L0 — B(kxy + vki1) L
-

= —ng /XR U;,Bl (x',x1)f (x1) dxy (21)
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and for plate bending

S~ p +nﬁZ Zwk / TY ¥ X(EIN(E)" () de

No
m Zpk / U X X(ENAEI(E)dE + Bk + vhn)Ls + Blkas + vk )

XR
B(klzl + k22 + 2Vk11k22)1i7 — 1,~12 = —nﬁ/ Ul¥3(X,,X1)q(X1)d)€]
XL
where domain integrals

v O 0
I :/U,vasdQ, 17'2:/ i3 aul dQ, Iz = /UV = dQ,
o x|

K Ow ow
1a4:/ bl fdQ 1a5:/ “2az3dQ 1,-6=/9Ui3q3d9

g 0 0
Ii7 — ”5/9 Ui\lg3w3 dQ, Ii8 = I’l/g/ iB3 aul dQ 11'9 / Ul\lg3 auz d'Q’

ow ow
Iodo = I’l/g/ Ui%l 3dQ Iacll Znﬂ/ U;}z 3dQ [,-12 = I’l/;/ Ul\/;;qug
Q

(22)

can be transformed to boundary integrals by applymg the dual reciprocity method using a radial bases

function.

Portela et al. (1992) and Mi and Aliabadi (1992) proposed the use of the dual boundary element method
for two-dimensional and three-dimensional problems respectively. A similar technique can be used for
cracked shell problems (see Dirgantara and Aliabadi, 2001). The strategy used for modelling stiffened

panels can be summarized as follows:

1. Displacement equations (8) and (9) are applied for collocation on non-cracked boundaries and one of the

crack surface.

2. Traction equations (10) and (11) are applied for collocation on the other crack surfaces.
3. The interaction between stiffeners and shell is represented by body forces in Egs. (13) and (14).

After the collocation point passes through all the collocation nodes on the boundary I' and on the
selected points in the domain as shown in Fig. 3, Egs. (17)—(20) results in the following linear system of

equations:

Fig. 3. Strategy of dual element method: (A) domain points (Egs. (6) and (7)), (o) boundary points (Egs. (8) and (9)) and (Q) one of the

crack surfaces (Egs. (10) and (11)).
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H H"|[u Gl JFX F' fulfO 55

H H*[|w/[ 1G'p) |F F' [|lw/[|b (25)
where H*, G¥, HY and G are boundary element influence matrices for plane stress elasticity and the plate
bending problem respectively, H”, H" are coupling matrices caused by the shell curvatures &, k>, and the
interaction between the beam and the shell and b denotes domain integrals for shear load, the last term in
the above equation is from the linear integrals caused by interactions between stiffeners and shell. Con-
sidering the boundary conditions on I', the unknown boundary values for displacements or tractions and
the displacement and deflection on the stiffener x, = 4 are obtained by solving the system of equations (21).
An altenative strategy is to apply the displacement equations (8) and (9) on non-cracked boundary and

traction equations (10) and (11) on one of the crack surfaces. The unknows on the crack surface are the
discontinuities of displacement ou, and dw; which can be used to evaluate stress intensity factors.

4. Stress intensity factors evaluation

A set of special shape functions can be used to model the displacement field \/r behaviour near the crack
tip (Aliabadi and Rooke, 1991). Suppose the shape function is in the form

N, =da)+a\\/1+n+d(1+1n)

the shape functions for crack tip elements with the crack tip located at # = —1 are
N B—VISn+2yT+n-2
T2 VI5+V3 -6
3(3 — V15 — 12T+ 1+ 2(V15 4+ V/3)
N, = (26)
2(V15+ V3 -6)
N (V3-=3m+2yT+n-2
) VI5+V3-6
and for the crack tip element with the crack tip at n = +1 are
N, =ay+aj\/1+n+d(1+n)
The shape functions for the crack tip elements with the crack tip located at n = —1 are
N C3(VB-3m+2/T—p-2
T2 VIS5 +V3-6
33— V15)n — 12yT =+ 2(V15+V3)
N, = (27)
2(V154+ /3 - 6)
v _306- VIS +2y/T—n -2
T2 V5+VE-6

The accuracy of the results can be improved by using two points interpolation used in this paper with
special elements near the crack tips (see Dirgantara and Aliabadi, 2001; Aliabadi, 2002). Stress intensity
factors for the in-plane problem and bending problem are obtained from the following equations. The
relationships between discontinuity displacements and stress intensity factors can be written as
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Auy = uf —
Auy = uj

Aw; = w —
Awy = wy —

— wt -
Aws =wy —wy =

—uy, =
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! EV2n !
8
EV2n

m
K 2

_ b
Wy, = K

SEh

24(1 +v)\/ZKb

where K", K? (o« = 1,2, i = 1,2, 3) are membrane stress intensity factors and bending stress intensity factors
respectively. Stress intensity factors are evaluated either by one point near the crack tip or by the two points

interpolation formula. The final stress intensity factors along the thickness of the shell are given as

K[()Cj;) = K;n —+

KH(X3) = K;n +

Kui(x3) =

2h

12X3
h3

12)(3
h3

Ky

K3

5. Numerical examples

2x; 2
1- (7*) ]Ké’

In this section three examples involving stiffened cylindrical shells containing either one or two cracks are
presented.

Example 1 (Cylindrical shell with double stiffeners and a central crack). Consider a simply supported stiffened
cylindrical shell (see Fig. 4) subjected to a uniform pressure load ¢go. The geometric parameters for the shell
are chosen as: thickness 2 = 0.05a, crack length ¢ = 0.2a, distance between stiffener d = 0.4a and curvatures
k =k =0.1/a, ky = 0. The Poisson ratio v = 0.3 and elasticity modulus is E£. The stiffeners have rect-
angular cross-section with area 4 = 0.05 x 0.4a>. The parameters of the stiffeners are taken to be the same
as the cylindrical shell. The components of displacement and deflection are defined on the boundary as

and

U2:W3:O at x = +a

t=p=p=0 atx==a

uy=wy;=0 aty==a

th=p=p=0 aty==a

uy=0 atx==aand y=0.

A BEM mesh with 40 quadratic boundary elements and 64 DRM domain points are used and the
number of nodes for each beam N = 3 is as shown in Fig. 4. The results obtained for displacements,
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o Boundary nodes

° Nodes on beam
= Domain points

Fig. 4. A cracked cylindrical shell with two transverse frames under pressure load.

deflections and rotations along the y-axis of the cylinder are shown in Fig. 5(a)-(e). The finite element
results using a software package (SAP90), with 16 x 16 four-node linear elements, shown in Fig. 5, are also
plotted in the figures for comparison. Due to symmetry of the structure, only a quarter of the shell is
considered for the finite element analysis. Normalized stress intensity factors K?/go\/nc = 0.014 and
K" /qo/mc = 16.09. The maximum value of the stress intensity factor, from Eq. (27), K" /go\/mc = 49.7.
Good agreement is achieved for displacements u;, u, and deflection w; with the finite element method.
Because the classical plate theory (thin plate) is used in the finite element method, the difference between
FEM and BEM results for rotation w; is quite large.

Example 2 (Simply supported cylindrical shell with a central crack, two longitudinal stiffeners and two
transverse frames). Consider a cylindrical shell with two longitudinal stiffeners, two transverse frames and a
central crack of length 2¢ subjected to uniform pressure load g (see Fig. 6). The materials are the same for
the shell and stiffeners and the constants are chosen as £ = 73000 MPa, v = 0.33. The cross-sectional areas
of each frame and stiffener are taken as 4 = 0.01754%> and the moment of inertia to the mid-plane of the
shell I, = 1.0193 x 10~*a* and parameter e = 0.1214a. The prescribed boundary conditions are

wy=0 atx;=24a and x, = +a

t1:t2:p1:p2:0 atx1::|:a, and x2::|:a
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Fig. 5. Comparison of BEM and FEM results: (a, b) displacements, (c) deflection and (d, e) rotations of stiffened cylindrical shell.

uy=0 atx;==4a and x, =0

Lh=p=pp=p3=0 atxy;=4a and x =0
u, =0 atx,==4a and x; =0
h=p=pp=p3=0 atx,=4a and x =0

The same BEM mesh and distribution of DRM domain points as in Example 1 are used with five nodes
on the beam (i.e. N = 5). Because of the symmetry of load and configuration, there are only two stress
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(a)

Fig. 6. Central cracked cylindrical shell with two stiffeners and two frames under internal pressure.

(b)

231

intensity factors at the crack tips K? and K}". The numerical results of the stress intensity factors due to
uniform pressure are plotted against the half-length of crack ¢ and the dimensionless factor ak;; (ky, = 0) in
Fig. 7(a) and (b). The normalized stress intensity factors tend to decrease as the curvature tends to zero (i.e.
flat plate problem). It can be seen that the moment stress intensity factor K7 and membrane stress intensity

factor K" decrease as ¢/a tends to 0.5 where the frame is located. The maximum stress intensity factors Kj"**
which occur on the top surface of the shell are shown in Fig. 7(c).
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Example 3 (A4 cylinder with periodic stiffeners and frames and cracks subjected to internal pressure). Consider
a long cylinder (fuselage) stiffened with longitudinal stiffeners and frames containing periodic cracks as
shown in Fig. 8. Owing to the symmetry of the structure, only a small part of the fuselage which is cut along
the dashed lines in Fig. 7 is analysed with the following boundary conditions:

uy=w; =0 atx ==+a

t2:p2:p3:0 at x; = +a

Uy =wr, =0 atx,==a

t1:p1:p3:0 at x, = +a

The material parameters of the shell, frames and stiffeners and the geometrical dimensions are the same
as in Example 2. As in Example 2, there are only two stress intensity factors at the crack tips K} and K}’
(because of the symmetry of load and structure). Normalized stress intensity factors for the bending
problem and for the plane stress problem are plotted against the half length of crack ¢ and dimensionless
factor ak in Fig. 9(a) and (b). The normalized stress intensity factors of bending K? are very small and K"
are close to 1 for small curvatures as the membrane forces are significant in this case. Also it can be seen
that the moment stress intensity factor K and membrane stress intensity factor K" decrease as ¢/a tends to
0.5. The maximum values of stress intensity factors Ky are shown in Fig. 9(c).

6. Conclusions

A new boundary element formulation for analysis of curved stiffened cracked panels was presented in
this paper. The coupled boundary element formulation was achieved by using the two-dimensional plane
stress elasticity and shear deformable plate. The interaction forces were determined in terms of the de-
flection of the curved beam. The dual boundary element method for analysis of stiffened cracked shells was
developed. The domain integrals in displacement and traction boundary integral equations were trans-
formed to boundary integrals by the dual reciprocity method. By solving integral equations, displacements
for the in-plane problem and deflection and rotations for the plate can be obtained numerically. Stress
intensity factors: two for in-plane and three for bending problems, were evaluated from two points dis-
continuity displacements near the crack tips. The numerical examples indicate that the boundary element
method is an efficient and accurate method of analysis for cracks in stiffened shell structures.
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Appendix A. Interaction forces between shell and stiffeners

For convenience the following analysis assume that x = x; and y = x,. Consider a stiffened shell as shown
in Fig. 1 with a stiffener at y = 0. The differential equations can be deduced from the fundamental equations
for the shell problem in Cartesian coordinates as follows (Chinh, 1997; Wen et al., 2002b):

d*uy dw  f(x)
e ka—i-ﬁ—o (A.1)
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d'w du d
EI e + kEA EO + KFPEAw = q(x) + e Qix) (A.2)
where u is displacement at the central point of the section along the beam axis, k = &k, w = ws, and 4 is the
area of beam section. Considering the configuration of beam deformation, the displacement u, along the

beam axis can be related to the displacement on the shell u

dw
= s A3
up=u+te I (A.3)

Substituting Eq. (A.3) into (A.1) and (A.2) gives

du  dw  dw  f(x)
dx ka-‘r E-F——O (A4)

d*w d*w du df (x)
EI 2ekEA—— + kEA— + k*EA A.
dx4+ ek Em +k dx+k w=gq(x)+e o (A.5)
Eq. (A.5) can be written as
, diw d2 X d*u du
The characteristic equation for the differential equation (A.6) is given by
B2 +>=0 (A7)

where

B ekA w—k A
T I+e2d’ TV I+e4

As A < a, the four roots of Eq. (A.7) can be found f = &¢ 4 iy, where & = \/o.cos ¢, n = \/asin ¢ and

A
¢ ==+ tan!

2 Vo2 — )2
The general solution of Eq. (A.6) can be written as
Ww(x) = e (4 cos nx + Bsinnx) + e =*(C cos nx + D sin nx) (A.8)

By use of an interpolation function, the interaction forces and moment can be approximated as

o) =Y L@, )= L) (A9)

where N denotes the number of nodes on the beam and, ¢” and f” are the nodal values of the interaction
forces. Shape functions L,(x) are given by

L,(x) = H x—xm/ H (A.10)

m=1,m#n =1,m#n
In general, the in-plane displacements u(x) are unknown at the two ends of the beam. They are expressed as

N+42 N+2

(x) = ZLn @', wx) =Y Ly(x)w" (A.11)
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where xy,; = xp and xy,, = xr, and " are the nodal values of displacement. Substituting Eqgs. (A.9) and
(A.11) into Eq. (A.6) and solving the differential equation (A.6) results in
) ) N+l
w(x) = w(x) + w'(x) = e**(4 cos yx + Bsinyx) + e~ (Ccosnx + Dsinnx) + Z ax* (A.12)
k=0
where w*(x) is a particular solution and coefficients a; are determined by substituting ¢(x) and u(x) from
Egs. (A.9) and (A.11) into Eq. (A.6). Coeflicients 4, B, C and D are determined by applying boundary
conditions at the two ends of the curved beam. The boundary conditions can be written as

N+1 d2W f
w=w"", W:o orx=x. =0
N+2 dzw f Al
w=w", @:0 orx=xg =0 (A.13)
for the moment free ends, and
w=0, %:0 forx=x.=0
w=0, %:0 forx=xg =0 (A.14)
for the clamped beam. Substituting f(x) into Eq. (A.4) and solving this differential equation gives
LS ) = k) + e ) + o + (A.15)
EA,,:1”X‘ = kw(x) + e g+ ulx) + oo+ ax .

=
=
]
=
o
~
S
=
Il
—
\

"L, (x)dxdx,

Ex
w(x) = / w(x)dx L [4 (& cos nx + nsinnx) + B(Esin nx — 1 cos nx)]

BGEN:
e~ N+1 el
52T’12 [C(—¢&cosnx + nsinnx) + D(—&sinnx — ncosnx)] + kz:; %
¢y and ¢; are determined by the application of boundary conditions at the two ends of the beam
u=u"*"" forx=x, u=u""? forx =xp (A.16)

Egs. (A.12) and (A.15) can be written in matrix form as

Rw = Qq + Pu (A.17)
and
Ef =Q'q+ R'w+Pu (A.18)

Then the interaction forces nodal values can be expressed in terms of nodal values of deflection and dis-
placement as

q=Q 'Rw—Q 'Pu (A.19)
and

f=E'QQ 'R+R|w+E '[P -QQ 'Plu (A.20)
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