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Abstract

A dual boundary element method is developed for a analysis of reinforced cracked shallow shells. Boundary integral

equations are derived from the Betti�s reciprocal theorem for a cracked shallow shell with transverse frames and lon-

gitudinal stiffeners. The effect of frames and stiffeners are treated as a distribution of line body forces. The radial basis

function is used to transform domain integrals to boundary integrals. Stress intensity factors are evaluated from crack

opening displacements. The effect of curvature on the stress intensity factors is illustrated by numerical examples. Three

examples are presented to demonstrate the accuracy of this method compared with solutions obtained using the finite

element method.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Enhanced quality control procedures introduced at the manufacturing stage aim to ensure aircraft are

free of structural flaws. However, since the early 1950s, experience has shown that the ability to tolerate a

substantial amount of damage is a requirement for modern aircraft. For transport aircraft the skin

structure of a pressurized fuselage is fatigue sensitive. Therefore accurate fatigue and residual strength

estimations of the critical components must be carried out to ensure safe operation. Aircraft fuselages are

made of thin sheets of metal (i.e. a skin) reinforced by longitudinal and transverse stiffeners. The stiffeners

can be attached to the sheet by means of fasteners, bonded to it or, alternatively, machined to form an
integral panel. The longitudinal and transverse membranes are used to divide the skin into small panels, so

increasing the bulkling and failing loads as well as assisting the skin in resisting bending, axial loads and

hoop stress caused by pressurization of the aircraft. The stiffeners provide an alternative path for the panel

load to pass around a cracked skin. If a skin crack reaches a critical length and a skin fracture begins, the
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load is transferred from the skin to the stiffeners and the fracture is arrested. Fracture mechanics provides

the concepts and mathematical basis for damage tolerance design.

Configurations involving cracks in infinite or semi-infinite plates with riveted stiffeners or stringers have

been studied by several authors (see, for example, Romualdi et al., 1957; Sanders, 1959; Greif and Sanders,
1965; Salgado and Aliabadi, 1998). By using Reissner�s plate theory and the Fourier integral transform

technique, an analytical solution for a stiffened plate containing a through-crack subjected to a uniform

bending load was obtained by Yahsi and Shahid (1986). The asymptotic stress state near the crack tip

terminating at the stiffener was also examined in Yahsi and Shahid (1986). More recently, attention has

been paid to curved panels used in the fuselage section (see Schijve, 1995). It is generally recognized that

cracks in curved shells behave differently from cracks in flat sheets. This is mainly due to the curvature

which causes amplification of the crack opening displacements (CODs) in the shells compared with to

the case of a crack on a plate subjected to identical membrane loading conditions. Application of the
finite element method to cracked curved panels can be found in Barsoum et al. (1979) and Huang et al.

(1997a,b).

The application of the boundary integral equation method to the plate bending problem was presented

by Jaswon and Maiti (1968) using classical theory. For the Reissner plate model, the boundary inte-

gral equation was derived by Vander Wee€een (1982) and fundamental solutions were deduced using the

Hormander method. A review of the application of the boundary element method to plate bending

problems can be found in the book by Aliabadi (1998). A displacement integral equation for a shear de-

formable shell was derived by Dirgantara and Aliabadi (1999) and the cell technique was used to treat the
domain integrals. Recently Wen et al. (2002a) developed the dual reciprocity method to transform domain

integrals into boundary integrals in BEM analysis for shell problems and studied reinforced shells Wen et al.

(2002b). Hypersingular formulation for cracked shells was presented by Dirgantara and Aliabadi (2001). A

comprehensive coverage of BEM formulations can be found in a two volume text book by Wrobel (2002)

and Aliabadi (2002).

In this paper, based on the shear deformable plate theory, the dual boundary integral equations are

presented for stiffened shallow shells. The couple terms are treated as body forces and the boundary values

of rotations and deflection for plate bending and displacements for the two-dimensional in-plane problem
are determined for a cracked panel by solving the dual integral equations. The effects of stiffeners on the

reinforced shell are described; the line body forces and the distributions of these body forces are determined

by the displacement connection conditions. Stress intensity factors for both bending and in-plane problems

are obtained by CODs. Several examples are presented and comparisons are made with the finite element

method to demonstrate the accuracy of the proposed method.

2. Boundary integral equations for a cracked shell

Consider a shallow shell, as shown in Fig. 1(a), with a quadratic middle surface given by

z ¼ � 1

2
ðk11x21 þ k22x22Þ ð1Þ

where k11 and k22 are the principal curvatures of the shell in the x1- and x2-directions respectively. The

equilibrium equations can be written in terms of displacements for plane stress elasticity as

LKabub þ fa ¼ 0 ð2Þ

and, for plate bending,

LVikwk þ qi ¼ 0 ð3Þ
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where Greek indices vary from 1 to 2 and Roman indices vary from 1 to 3. The Navier differential operators

LKab and LVik are defined in Wen et al. (2002a). The equivalent body forces for plane stress elasticity are given

as

fa ¼ f 0
a þ B½ð1� mÞkab þ mk//dab�w3;b ð4Þ

and, for plate bending as

q1 ¼ q2 ¼ 0

q3 ¼ q03 � B½ð1� mÞkab þ mk//dab�ua;b � Bðk211 þ k222 þ 2mk11k22Þw3 ð5Þ

where ua and w3 are translations of displacements in x1-, x2- (two-dimension) and x3-directions and wa are

rotations in the xa-direction. The body forces applied on the shell are denoted by f 0
a and q03 along the xa- and

x3-directions respectively. The material parameter B ¼ Eh=ð1� m2Þ is tension stiffness, D ¼ Eh3=12ð1� m2Þ
is bending stiffness of the plate, h is the thickness of the plate; and E and m are the elastic constants.

By using Betti�s reciprocal theorem, displacements for plane stress two-dimensional elasticity at X0 in the

domain X can be written as (see Wen et al., 2002a; Aliabadi, 2002)

uaðX0Þ ¼
Z

C
UK

abðX0; xÞtbðxÞdCðxÞ � B½ð1� mÞkbc þ mk//dbc�
Z

C
UK

abðx0; xÞncðxÞw3ðxÞdCðxÞ

�
Z

C
TK

abðX0; xÞubðxÞdCðxÞ þ
Z

X
Us

abðX0;XÞfbðXÞdXðXÞ ð6Þ

Fig. 1. Curved stiffened panel and curved stiffener.
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where ta ¼ Nabnb; UK
abðx0; xÞ and TK

abðx0; xÞ are displacement and traction fundamental solutions for the plane

stress condition (Kelvin�s solutions). The rotations and deflection wi at X
0 in the domain X can be obtained

from

wiðX0Þ ¼
Z

C
UV
ik ðX0; xÞpkðxÞdCðxÞ �

Z
C
T V
ik ðX0; xÞwkðxÞdCðxÞ þ

Z
X
UV
ik ðX0;XÞqkðXÞdXðXÞ ð7Þ

where pa ¼ Mabnb, p3 ¼ Qbnb and UV
ij , T

V
ij are displacement and traction fundamental solutions respectively

for the plate bending problem. The boundary integral equations can be obtained by considering the limit as

the domain point X0 to a boundary point x0. Substituting (4) and (5) into Eqs. (6) and (7), the boundary

integral equation (10) for the shallow shell problem can be written as

cKabðx0Þubðx0Þ þ
Z
--

C
TK

abðx0; xÞubðxÞdCðxÞ �
Z

C
UK

abðx0; xÞtbðxÞdCðxÞ þ B½ð1� mÞkbc þ mk//dbc�

	
Z

C
UK

acðx0; xÞnbðxÞw3ðxÞdCðxÞ � B
Z

X
UK

abðx0;XÞ½ð1� mÞkbc þ mk//dbc�w3;cðXÞdXðXÞ

¼
Z

X
UK

abðx0;XÞf 0
b ðXÞdXðXÞ ð8Þ

for plane stress, where
R
-- denotes a Cauchy principal-value integral, and

cVikðx0Þwkðx0Þ þ
Z
--

C
T V
ik ðx0; xÞwkðxÞdCðxÞ �

Z
C
UV
ik ðx0; xÞpkðxÞdCðxÞ þ B½ð1� mÞkab þ mk//dab�

	
Z

X
UV
i3ðx0;XÞua;b dX � Bðk211 þ k222 þ 2mk11k22Þ

Z
X
UV
i3ðx0;XÞw3 dX ¼

Z
X
UV
i3ðx0;XÞq03 dX ð9Þ

for plate bending. The free terms cKabðx0Þ and cVikðx0Þ are functions of the geometry at the boundary points
which can be determined by considering rigid body movements.

On one of the crack surfaces, traction boundary integral equations with hypersingularities can be written

as follows (see Dirgantara and Aliabadi, 2001):

1

2
taðxþÞ � 1

2
taðx�Þ ¼ nb

Z
--

C
UK

abcðxþ; xÞtcðxÞdCðxÞ � nb TK
abcðxþ; xÞucðxÞdCðxÞ

� nbB½ð1� mÞkhc þ mk//dhc�
Z

C
UK

abcðxþ; xÞnhðxÞw3ðxÞdCðxÞ

þ nbB
Z

X
UK

abcðxþ;XÞ½ð1� mÞkhc þ mk//dhc�w3;hðXÞdXðXÞ

þ nb

Z
X
UK

abcðxþ;XÞqcðXÞdXðXÞ ð10Þ

for two-dimensions and

1

2
piðxþÞ � 1

2
piðx�Þ ¼ nb

Z
--

C
UV
ibkðXþ; xÞpkðxÞdCðxÞ � nb T V

ibkðXþ; xÞwkðxÞdCðxÞ

� nbB½ð1� mÞkch þ mk//dch�
Z

X
UV
ib3ðxþ;XÞuc;h dX � nbBðk211 þ k222 þ 2mk11k22Þ

	
Z

X
UV
ib3ðxþ;XÞw3 dX þ nb

Z
X
UV
ibkðxþ;XÞq0k dX ð11Þ

where xþ, x� denote the collocation points on the crack�s upper and lower surfaces respectively, denotes

a Hadamard principal-value integral, UK
abc, T

K
abc and U

V
ibk, T

V
ibk contain derivatives of fundamental solutions
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(see Dirgantara and Aliabadi, 2001 for details). It can be seen that the BEM solutions for the shallow shell

problem can be solved from boundary integral equations (8)–(11) by the coupling of plane stress two-

dimensional elasticity and the plate bending problem. The domain integrals contain coupling terms in

equivalent body forces fa and q03 in the equations. In the boundary integral equations (8)–(11), there are 12
domain integrals in the absence of body force (i.e. f 0

1 ¼ f 0
2 ¼ 0). They can be transformed to boundary

integrals by using the dual reciprocity method (see Wen et al., 2002a; Dirgantara and Aliabadi, 2001;

Aliabadi, 2002 for details).

Considering the properties of the fundamental solution as below:

Uabðx0þ; xÞ ¼ Uabðx0�; xÞ; Uabcðx0þ; xÞ ¼ Uabcðx0�; xÞ

and

Tabðx0þ; xÞ ¼ �Tabðx0�; xÞ; Tabcðx0þ; xÞ ¼ �Tabcðx0�; xÞ

If tþb þ t�b ¼ 0 for two-dimensions, the boundary integral equations (1) and (8) can be rewritten as

cKabðx0Þubðx0Þ þ
Z
--

C0

TK
abðx0; xÞubðxÞdC þ

Z
Cþ
TK

abðx0;xþÞDub dC �
Z

C0

UK
abðx0; xÞtbðxÞdC

þ B½ð1� mÞkbc þ mk//dbc�
Z

C0

UK
acðx0; xÞnbðxÞw3 dC

�
þ
Z
Cþ
UK

acðx0; xÞnbðxÞDw3ðxÞdC

�

� B
Z

X
UK

abðx0;XÞ½ð1� mÞkbc þ mk//dbc�w3;cðXÞdX ¼
Z

X
UK

abðx0;XÞf 0
b dX ð12Þ

for displacements and

1

2
taðxþÞ � 1

2
taðx�Þ ¼ nb

Z
--

C0

UK
abcðxþ; xÞtcðxÞdC � nbðx0þÞ

Z
C0

TK
abcðx0þ; xÞucðxÞdC

� nbðx0þÞ TK
abcðx0þ; xþÞDuc dC � nbB½ð1� mÞkhc þ mk//dhc�

	
Z

C0

UK
abcðxþ; xÞnhðxÞw3 dC

�
þ
Z
Cþ
UK

abcðxþ; xÞnhðxÞDw3 dC

�

þ nbB
Z

X
UK

abcðxþ;XÞ½ð1� mÞkhc þ mk//dhc�w3;hðXÞdX þ nb

Z
X
UK

abcðxþ;XÞq0c dX

ð13Þ

for tractions. Similarly if pþi þ p�i ¼ 0 for bending, the boundary integral equations (2) and (9) can be

rewritten as

cVikðx0Þwkðx0Þ þ
Z
--

C0

T V
ik ðx0; xÞwkðxÞdC þ

Z
Cþ
T V
ik ðx0; xþÞDwk dC �

Z
C0

UV
ik ðx0; xÞpkðxÞdCðxÞ

þ B½ð1� mÞkab þ mk//dab�
Z

X
UV
i3ðx0;XÞua;b dX � Bðk211 þ k222 þ 2mk11k22Þ

Z
X
UV
i3ðx0;XÞw3 dX

¼
Z

X
UV
ik ðx0;XÞq0k dX ð14Þ
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for rotations and deflection, and

1

2
piðxþÞ � 1

2
piðx�Þ ¼ nb

Z
--

C0

UV
ibkðXþ; xÞpkðxÞdC � nb

Z
C0

T V
ibkðXþ; xÞwkðxÞdC

� nbðx0þÞ T V
ibkðx0þ; xþÞDwk dC � nbB½ð1� mÞkch þ mk//dch�

Z
X
UV
ib3ðxþ;XÞuc;h dX

� nbBðk211 þ k222 þ 2mk11k22Þ
Z

X
UV
ib3ðxþ;XÞw3 dX þ nb

Z
X
UV
ibkðxþ;XÞq0k dX ð15Þ

for tractions, where C0 ¼ C � Cþ � C� (boundaries excluding crack surfaces), Cþ and C� represent upper

and lower crack surfaces and Dub and Dwk are discontinuities of displacements and defined as

Dub ¼ uþb � u�b and Dwk ¼ wþ
k � w�

k . In this case, the unknowns can be reduced to the displacements or

traction on the boundary C0 and discontinuity of displacement on the crack surface C. Applying the dis-

placement integral equation on the boundary C0 and the traction equation on the crack surface Cþ gives a

linear system to determine all unknowns including discontinuity displacements on the crack surface Dub

and Dwk.

3. Numerical implementation for stiffened cracked shells

Considering a straight beam parallel to the x1-axis and ignoring the torsional effect of a curved beam,

there are only two distributions of interaction forces f ðx1Þ and qðx1Þ at the top of the beam along the x1-axis
as shown in Figs. 1(b) and 2. If there is only a uniform pressure load q0 acting on the shell, the body forces
in Eqs. (4) and (5) can be written as

f1ðx1; x2Þ ¼ �f ðx1Þdðx2 � x02Þ
f2ðx1; x2Þ ¼ 0

q3ðx1; x2Þ ¼ q03 � qðxÞdðx2 � dÞ
ð16Þ

Fig. 2. Interaction forces and nodal distribution on the curved stiffener.
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where dðxÞ is the Dirac delta function, x denotes the local coordinate on the beam along the x1-axis and d
denotes the distance between the beam and x1-axis. The interaction forces� nodal values can be expressed in

terms of nodal values of deflection and displacement as (see Appendix A)

q ¼ Q�1Rw�Q�1Pu ð17Þ

and

f ¼ E�1½Q0Q�1Rþ R0�wþ E�1½P0 �Q0Q�1P�u ð18Þ

Using quadratic elements, the boundary integral equation (8) can be written in a discretized form as

cKabðx0Þubðx0Þ þ
XL0
n¼1

X3

l¼1

ulb

Z 1

�1

TK
ab½x0; xðnÞ�NlðnÞJnðnÞdn �

XN0

n¼1

X3

l¼1

tlb

Z 1

�1

UK
ab½x0; xðnÞ�NlðnÞJnðnÞdn

� B½ð1� mÞkbc þ mk//dbc�
XN0

n¼1

X3

l¼1

wl3

Z 1

�1

UK
ab½x0; xðnÞ�NlðnÞJnðnÞncðxÞdn � Bðk11 þ mk22ÞIa4

� Bðk22 þ mk11ÞIa5 ¼ �
Z xR

xL

UK
a1ðx0; x1Þf ðx1Þdx1 ð19Þ

where ulb, t
l
b and wl3 present the boundary values at each node, Nl and Jn are shape functions and Jacobian

for each element, N0 is the total number of elements and Ia4 and Ia5 are domain integrals, xL, xR are the two

end coordinates of a curved beam. Similarly, Eq. (9) becomes

cVikðx0Þwkðx0Þ þ
XN0

n¼1

X3

l¼1

wlk

Z 1

�1

T V
ik ½x0; xðnÞ�NlðnÞJnðnÞdn �

XN0

n¼1

X3

l¼1

plk

Z 1

�1

UV
ik ½x0; xðnÞ�NlðnÞJnðnÞdn

þ Bðk11 þ mk22ÞIi2 þ Bðk22 þ mk11ÞIi3 þ Bðk211 þ k222 þ 2mk11k22ÞIi1 � Ii6 ¼ �
Z xR

xL

UV
i3ðx0; x1Þqðx1Þdx1

ð20Þ

Using quadratic elements, the traction boundary integral equations (10) and (11) can be written in a dis-

cretized form as

1

2
½taðxþÞ � taðx�Þ� þ nb

XN0

n¼1

X3

l¼1

ulc

Z 1

�1

TK
abc½x0; xðnÞ�NlðnÞJnðnÞdn

� nb

XN0

n¼1

X3

l¼1

tlc

Z 1

�1

UK
abc½x0; xðnÞ�NlðnÞJnðnÞdn � nbB½ð1� mÞkhc þ mk//dhc�

XN0

n¼1

X3

l¼1

wl3

	
Z 1

�1

UK
abc½x0; xðnÞ�NlðnÞJnðnÞnhðxÞdn � Bðk11 þ mk22ÞIa10 � Bðk22 þ mk11ÞIa11

¼ �nb

Z xR

xL

Us
ab1ðx0; x1Þf ðx1Þdx1 ð21Þ
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and for plate bending

1

2
½piðxþÞ � piðx�Þ� þ nb

XN0

n¼1

X3

l¼1

wlk

Z 1

�1

T V
ibk½x0; xðnÞ�NlðnÞJnðnÞdn

� nb

XN0

n¼1

X3

l¼1

plk

Z 1

�1

UV
ibk½x0; xðnÞ�NlðnÞJnðnÞdn þ Bðk11 þ mk22ÞIi8 þ Bðk22 þ mk11ÞIi9

þ Bðk211 þ k222 þ 2mk11k22ÞIi7 � Ii12 ¼ �nb

Z xR

xL

UV
ib3ðx0; x1Þqðx1Þdx1 ð22Þ

where domain integrals

Ii1 ¼
Z

X
UV
i3w3 dX; Ii2 ¼

Z
X
UV
i3

ou1
ox1

dX; Ii3 ¼
Z

X
UV
i3

ou2
ox2

dX;

Ia4 ¼
Z

X
UK

a1

ow3

ox1
dX; Ia5 ¼

Z
X
UK

a2

ow3

ox2
dX; Ii6 ¼

Z
X
UV
i3q3 dX

ð23Þ

Ii7 ¼ nb

Z
X
UV
ib3w3 dX; Ii8 ¼ nb

Z
X
UV
ib3

ou1
ox1

dX; Ii9 ¼ nb

Z
X
UV
ib3

ou2
ox2

dX;

Ia10 ¼ nb

Z
X
UK

ab1

ow3

ox1
dX; Ia11 ¼ nb

Z
X
UK

ab2

ow3

ox2
dX; Ii12 ¼ nb

Z
X
UV
ib3q

0
3 dX

ð24Þ

can be transformed to boundary integrals by applying the dual reciprocity method using a radial bases

function.

Portela et al. (1992) and Mi and Aliabadi (1992) proposed the use of the dual boundary element method

for two-dimensional and three-dimensional problems respectively. A similar technique can be used for

cracked shell problems (see Dirgantara and Aliabadi, 2001). The strategy used for modelling stiffened

panels can be summarized as follows:

1. Displacement equations (8) and (9) are applied for collocation on non-cracked boundaries and one of the
crack surface.

2. Traction equations (10) and (11) are applied for collocation on the other crack surfaces.

3. The interaction between stiffeners and shell is represented by body forces in Eqs. (13) and (14).

After the collocation point passes through all the collocation nodes on the boundary C and on the

selected points in the domain as shown in Fig. 3, Eqs. (17)–(20) results in the following linear system of

equations:

Fig. 3. Strategy of dual element method: (M) domain points (Eqs. (6) and (7)), (
) boundary points (Eqs. (8) and (9)) and ( ) one of the

crack surfaces (Eqs. (10) and (11)).
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HK Hw

Hu HK

� �
u

w

� �
� GKt

GVp

� �
¼ FK Fw

Fu FV

� �
u

w

� �
0

b

� �
ð25Þ

where HK, GK, HV and GV are boundary element influence matrices for plane stress elasticity and the plate

bending problem respectively, Hw, Hu are coupling matrices caused by the shell curvatures k11, k22 and the
interaction between the beam and the shell and b denotes domain integrals for shear load, the last term in

the above equation is from the linear integrals caused by interactions between stiffeners and shell. Con-

sidering the boundary conditions on C, the unknown boundary values for displacements or tractions and

the displacement and deflection on the stiffener x2 ¼ d are obtained by solving the system of equations (21).

An altenative strategy is to apply the displacement equations (8) and (9) on non-cracked boundary and

traction equations (10) and (11) on one of the crack surfaces. The unknows on the crack surface are the

discontinuities of displacement dua and dwk which can be used to evaluate stress intensity factors.

4. Stress intensity factors evaluation

A set of special shape functions can be used to model the displacement field
ffiffi
r

p
behaviour near the crack

tip (Aliabadi and Rooke, 1991). Suppose the shape function is in the form

Ni ¼ ai0 þ ai1
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
þ ai2ð1þ gÞ

the shape functions for crack tip elements with the crack tip located at g ¼ �1 are

N1 ¼
3

2

ð3�
ffiffiffiffiffi
15

p
Þg þ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
� 2ffiffiffiffiffi

15
p

þ
ffiffiffi
3

p
� 6

N2 ¼
3ð3�

ffiffiffiffiffi
15

p
Þg � 12

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
þ 2ð

ffiffiffiffiffi
15

p
þ

ffiffiffi
3

p
Þ

2ð
ffiffiffiffiffi
15

p
þ

ffiffiffi
3

p
� 6Þ

N3 ¼
3

2

ð
ffiffiffi
3

p
� 3Þg þ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
� 2ffiffiffiffiffi

15
p

þ
ffiffiffi
3

p
� 6

ð26Þ

and for the crack tip element with the crack tip at g ¼ þ1 are

Ni ¼ ai0 þ ai1
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
þ ai2ð1þ gÞ

The shape functions for the crack tip elements with the crack tip located at g ¼ �1 are

N1 ¼
3

2

ð
ffiffiffi
3

p
� 3Þg þ 2

ffiffiffiffiffiffiffiffiffiffiffi
1� g

p
� 2ffiffiffiffiffi

15
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þ
ffiffiffi
3

p
� 6
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15

p
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1� g
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þ
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3

p
Þ

2ð
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1� g
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15
p

þ
ffiffiffi
3

p
� 6

ð27Þ

The accuracy of the results can be improved by using two points interpolation used in this paper with

special elements near the crack tips (see Dirgantara and Aliabadi, 2001; Aliabadi, 2002). Stress intensity
factors for the in-plane problem and bending problem are obtained from the following equations. The

relationships between discontinuity displacements and stress intensity factors can be written as
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Du1 ¼ uþ1 � u�1 ¼ 8
ffiffi
r

p

E
ffiffiffiffiffiffi
2p

p Km
1

Du2 ¼ uþ2 � u�2 ¼ 8
ffiffi
r

p

E
ffiffiffiffiffiffi
2p

p Km
2

Dw1 ¼ wþ
1 � w�

1 ¼ 48
ffiffiffiffiffi
2r

p

Eh3
Kb

2

Dw2 ¼ wþ
2 � w�

2 ¼ 48
ffiffiffiffiffi
2r

p

Eh3
Kb

1

Dw3 ¼ wþ
3 � w�

3 ¼ 24ð1þ mÞ
ffiffiffiffiffi
2r

p

5Eh
Kb

3

ð28Þ

where Km
a , K

b
i (a ¼ 1; 2, i ¼ 1; 2; 3) are membrane stress intensity factors and bending stress intensity factors

respectively. Stress intensity factors are evaluated either by one point near the crack tip or by the two points

interpolation formula. The final stress intensity factors along the thickness of the shell are given as

KIðx3Þ ¼ Km
1 þ 12x3

h3
Kb

1

KIIðx3Þ ¼ Km
2 þ 12x3

h3
Kb

2

KIIIðx3Þ ¼
3

2h
1

"
� 2x3

h

� �2
#
Kb

3

ð29Þ

5. Numerical examples

In this section three examples involving stiffened cylindrical shells containing either one or two cracks are

presented.

Example 1 (Cylindrical shell with double stiffeners and a central crack). Consider a simply supported stiffened

cylindrical shell (see Fig. 4) subjected to a uniform pressure load q0. The geometric parameters for the shell

are chosen as: thickness h ¼ 0:05a, crack length c ¼ 0:2a, distance between stiffener d ¼ 0:4a and curvatures

k ¼ k11 ¼ 0:1=a, k22 ¼ 0. The Poisson ratio m ¼ 0:3 and elasticity modulus is E. The stiffeners have rect-

angular cross-section with area A ¼ 0:05	 0:4a2. The parameters of the stiffeners are taken to be the same

as the cylindrical shell. The components of displacement and deflection are defined on the boundary as

u2 ¼ w3 ¼ 0 at x ¼ �a
t1 ¼ p1 ¼ p2 ¼ 0 at x ¼ �a

u2 ¼ w3 ¼ 0 at y ¼ �a
t1 ¼ p1 ¼ p2 ¼ 0 at y ¼ �a

and

u1 ¼ 0 at x ¼ �a and y ¼ 0:

A BEM mesh with 40 quadratic boundary elements and 64 DRM domain points are used and the

number of nodes for each beam N ¼ 3 is as shown in Fig. 4. The results obtained for displacements,
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deflections and rotations along the y-axis of the cylinder are shown in Fig. 5(a)–(e). The finite element

results using a software package (SAP90), with 16	 16 four-node linear elements, shown in Fig. 5, are also

plotted in the figures for comparison. Due to symmetry of the structure, only a quarter of the shell is

considered for the finite element analysis. Normalized stress intensity factors Kb
1=q0

ffiffiffiffiffi
pc

p
¼ 0:014 and

Km
1 =q0

ffiffiffiffiffi
pc

p ¼ 16:09. The maximum value of the stress intensity factor, from Eq. (27), Kmax
I =q0

ffiffiffiffiffi
pc

p ¼ 49:7.
Good agreement is achieved for displacements u1, u2 and deflection w3 with the finite element method.

Because the classical plate theory (thin plate) is used in the finite element method, the difference between

FEM and BEM results for rotation w1 is quite large.

Example 2 (Simply supported cylindrical shell with a central crack, two longitudinal stiffeners and two

transverse frames). Consider a cylindrical shell with two longitudinal stiffeners, two transverse frames and a

central crack of length 2c subjected to uniform pressure load q0 (see Fig. 6). The materials are the same for
the shell and stiffeners and the constants are chosen as E ¼ 73000 MPa, m ¼ 0:33. The cross-sectional areas
of each frame and stiffener are taken as A ¼ 0:0175a2 and the moment of inertia to the mid-plane of the

shell Is ¼ 1:0193	 10�4a4 and parameter e ¼ 0:1214a. The prescribed boundary conditions are

w3 ¼ 0 at x1 ¼ �a and x2 ¼ �a
t1 ¼ t2 ¼ p1 ¼ p2 ¼ 0 at x1 ¼ �a; and x2 ¼ �a

Fig. 4. A cracked cylindrical shell with two transverse frames under pressure load.
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u1 ¼ 0 at x1 ¼ �a and x2 ¼ 0

t2 ¼ p1 ¼ p2 ¼ p3 ¼ 0 at x1 ¼ �a and x2 ¼ 0

u2 ¼ 0 at x2 ¼ �a and x1 ¼ 0

t1 ¼ p1 ¼ p2 ¼ p3 ¼ 0 at x2 ¼ �a and x1 ¼ 0

The same BEM mesh and distribution of DRM domain points as in Example 1 are used with five nodes
on the beam (i.e. N ¼ 5). Because of the symmetry of load and configuration, there are only two stress

Fig. 5. Comparison of BEM and FEM results: (a, b) displacements, (c) deflection and (d, e) rotations of stiffened cylindrical shell.
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intensity factors at the crack tips Kb
1 and Km

1 . The numerical results of the stress intensity factors due to
uniform pressure are plotted against the half-length of crack c and the dimensionless factor ak11 (k22 ¼ 0) in

Fig. 7(a) and (b). The normalized stress intensity factors tend to decrease as the curvature tends to zero (i.e.

flat plate problem). It can be seen that the moment stress intensity factor Kb
1 and membrane stress intensity

factor Km
1 decrease as c=a tends to 0.5 where the frame is located. The maximum stress intensity factors Kmax

I

which occur on the top surface of the shell are shown in Fig. 7(c).

Fig. 6. Central cracked cylindrical shell with two stiffeners and two frames under internal pressure.

Fig. 7. Normalized stress intensity factors: (a) bending, (b) membrane and (c) maximum values (k ¼ k11 and denotes the coefficient of

curvature).
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Fig. 8. Cracked fuselage panel.

Fig. 9. Normalized stress intensity factors for cracked fuselage panel: (a) bending, (b) membrane and (c) maximum values.
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Example 3 (A cylinder with periodic stiffeners and frames and cracks subjected to internal pressure). Consider

a long cylinder (fuselage) stiffened with longitudinal stiffeners and frames containing periodic cracks as

shown in Fig. 8. Owing to the symmetry of the structure, only a small part of the fuselage which is cut along

the dashed lines in Fig. 7 is analysed with the following boundary conditions:

u1 ¼ w1 ¼ 0 at x1 ¼ �a
t2 ¼ p2 ¼ p3 ¼ 0 at x1 ¼ �a

u2 ¼ w2 ¼ 0 at x2 ¼ �a
t1 ¼ p1 ¼ p3 ¼ 0 at x2 ¼ �a

The material parameters of the shell, frames and stiffeners and the geometrical dimensions are the same

as in Example 2. As in Example 2, there are only two stress intensity factors at the crack tips Kb
1 and Km

1

(because of the symmetry of load and structure). Normalized stress intensity factors for the bending

problem and for the plane stress problem are plotted against the half length of crack c and dimensionless

factor ak in Fig. 9(a) and (b). The normalized stress intensity factors of bending Kb
1 are very small and Km

1

are close to 1 for small curvatures as the membrane forces are significant in this case. Also it can be seen

that the moment stress intensity factor Kb
1 and membrane stress intensity factor Km

1 decrease as c=a tends to
0.5. The maximum values of stress intensity factors KI are shown in Fig. 9(c).

6. Conclusions

A new boundary element formulation for analysis of curved stiffened cracked panels was presented in
this paper. The coupled boundary element formulation was achieved by using the two-dimensional plane

stress elasticity and shear deformable plate. The interaction forces were determined in terms of the de-

flection of the curved beam. The dual boundary element method for analysis of stiffened cracked shells was

developed. The domain integrals in displacement and traction boundary integral equations were trans-

formed to boundary integrals by the dual reciprocity method. By solving integral equations, displacements

for the in-plane problem and deflection and rotations for the plate can be obtained numerically. Stress

intensity factors: two for in-plane and three for bending problems, were evaluated from two points dis-

continuity displacements near the crack tips. The numerical examples indicate that the boundary element
method is an efficient and accurate method of analysis for cracks in stiffened shell structures.
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Appendix A. Interaction forces between shell and stiffeners

For convenience the following analysis assume that x ¼ x1 and y ¼ x2. Consider a stiffened shell as shown

in Fig. 1 with a stiffener at y ¼ 0. The differential equations can be deduced from the fundamental equations

for the shell problem in Cartesian coordinates as follows (Chinh, 1997; Wen et al., 2002b):

d2u0
dx2

þ k
dw
dx

þ f ðxÞ
EA

¼ 0 ðA:1Þ
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EI
d4w
dx4

þ kEA
du0
dx

þ k2EAw ¼ qðxÞ þ e
df ðxÞ
dx

ðA:2Þ

where u0 is displacement at the central point of the section along the beam axis, k ¼ k11, w ¼ w3, and A is the

area of beam section. Considering the configuration of beam deformation, the displacement u0 along the

beam axis can be related to the displacement on the shell u

u0 ¼ uþ e
dw
dx

ðA:3Þ

Substituting Eq. (A.3) into (A.1) and (A.2) gives

d2u
dx2

þ k
dw
dx

þ e
d3w
dx3

þ f ðxÞ
EA

¼ 0 ðA:4Þ

EI
d4w
dx4

þ 2ekEA
d2w

d2x
þ kEA

du
dx

þ k2EAw ¼ qðxÞ þ e
df ðxÞ
dx

ðA:5Þ

Eq. (A.5) can be written as

ðEI þ EAe2Þ d
4w
dx4

þ 2ekEA
d2w

d2x
þ k2EAw ¼ qðxÞ � EA e

d3u

d3x

�
þ k

du
dx



ðA:6Þ

The characteristic equation for the differential equation (A.6) is given by

b4 þ 2kb2 þ a2 ¼ 0 ðA:7Þ
where

k ¼ ekA
I þ e2A

; a ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

I þ e2A

r

As k < a, the four roots of Eq. (A.7) can be found b ¼ �n � ig, where n ¼
ffiffiffi
a

p
cos/, g ¼

ffiffiffi
a

p
sin/ and

/ ¼ p
2
þ tan�1 kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � k2
p

The general solution of Eq. (A.6) can be written as

~wwðxÞ ¼ enxðA cos gxþ B sin gxÞ þ e�nxðC cos gxþ D sin gxÞ ðA:8Þ
By use of an interpolation function, the interaction forces and moment can be approximated as

qðxÞ ¼
XN
n¼1

LnðxÞqn; f ðxÞ ¼
XN
n¼1

LnðxÞf n ðA:9Þ

where N denotes the number of nodes on the beam and, qn and f n are the nodal values of the interaction

forces. Shape functions LnðxÞ are given by

LnðxÞ ¼
YN

m¼1;m6¼n
ðx� xmÞ

, YN
m¼1;m6¼n

ðxn � xmÞ ðA:10Þ

In general, the in-plane displacements uðxÞ are unknown at the two ends of the beam. They are expressed as

uðxÞ ¼
XNþ2

n¼1

LnðxÞun; wðxÞ ¼
XNþ2

n¼1

LnðxÞwn ðA:11Þ
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where xNþ1 ¼ xL and xNþ2 ¼ xR, and un are the nodal values of displacement. Substituting Eqs. (A.9) and

(A.11) into Eq. (A.6) and solving the differential equation (A.6) results in

wðxÞ ¼ ~wwðxÞ þ w�ðxÞ ¼ enxðA cos gxþ B sin gxÞ þ e�nxðC cos gxþ D sin gxÞ þ
XNþ1

k¼0

akxk ðA:12Þ

where w�ðxÞ is a particular solution and coefficients ak are determined by substituting qðxÞ and uðxÞ from
Eqs. (A.9) and (A.11) into Eq. (A.6). Coefficients A, B, C and D are determined by applying boundary

conditions at the two ends of the curved beam. The boundary conditions can be written as

w ¼ wNþ1;
d2w
dx2

¼ 0 for x ¼ xL ¼ 0

w ¼ wNþ2;
d2w
dx2

¼ 0 for x ¼ xR ¼ 0 ðA:13Þ

for the moment free ends, and

w ¼ 0;
dw
dx

¼ 0 for x ¼ xL ¼ 0

w ¼ 0;
dw
dx

¼ 0 for x ¼ xR ¼ 0 ðA:14Þ

for the clamped beam. Substituting f ðxÞ into Eq. (A.4) and solving this differential equation gives

1

EA

XN
n¼1

�LLnðxÞf n ¼ k�wwðxÞ þ e
dw
dx

þ uðxÞ þ c0 þ c1x ðA:15Þ

where �LLnðxÞ ¼
R R

LnðxÞdxdx,

�wwðxÞ ¼
Z
wðxÞdx ¼ enx

n2 þ g2
½Aðn cos gxþ g sin gxÞ þ Bðn sin gx� g cos gxÞ�

þ e�nx

n2 þ g2
½Cð�n cos gxþ g sin gxÞ þ Dð�n sin gx� g cos gxÞ� þ

XNþ1

k¼0

ak
xkþ1

k þ 1

c0 and c1 are determined by the application of boundary conditions at the two ends of the beam

u ¼ uNþ1 for x ¼ xL; u ¼ uNþ2 for x ¼ xR ðA:16Þ
Eqs. (A.12) and (A.15) can be written in matrix form as

Rw ¼ Qqþ Pu ðA:17Þ
and

Ef ¼ Q0qþ R0wþ P0u ðA:18Þ
Then the interaction forces nodal values can be expressed in terms of nodal values of deflection and dis-

placement as

q ¼ Q�1Rw�Q�1Pu ðA:19Þ
and

f ¼ E�1½Q0Q�1Rþ R0�wþ E�1½P0 �Q0Q�1P�u ðA:20Þ
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